卡尔曼滤波

Posted by 高庆东 on January 4, 2017

介绍

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:

    X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

算法步骤

预估计X(k)^= F(k,k-1)·X(k-1)

计算预估计协方差矩阵

C(k)^=F(k,k-1)×C(k)×F(k,k-1)’+T(k,k-1)×Q(k)×T(k,k-1)’

Q(k) = U(k)×U(k)’

计算卡尔曼增益矩阵

K(k) = C(k)^×H(k)’×[H(k)×C(k)^×H(k)’+R(k)]^(-1)

R(k) = N(k)×N(k)’

更新估计

X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]

计算更新后估计协防差矩阵

C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]’+K(k)×R(k)×K(k)’

X(k+1) = X(k)~

C(k+1) = C(k)~

重复以上步骤

c语言实现

  
int lman(n,m,k,f,q,r,h,y,x,p,g)

  int n,m,k;

  double f[],q[],r[],h[],y[],x[],p[],g[];

   int i,j,kk,ii,l,jj,js;


    double *e,*a,*b;

    e=malloc(m*m*sizeof(double));

    l=m;

    if (l<n) l=n;

    a=malloc(l*l*sizeof(double));

    b=malloc(l*l*sizeof(double));

    for (i=0; i<=n-1; i++)

      for (j=0; j<=n-1; j++)

        { ii=i*l+j; a[ii]=0.0;

          for (kk=0; kk<=n-1; kk++)

            a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];

        }

    for (i=0; i<=n-1; i++)

      for (j=0; j<=n-1; j++)


        { ii=i*n+j; p[ii]=q[ii];

、       for (kk=0; kk<=n-1; kk++)

           {
             p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];
       	   }

        }
    for (ii=2; ii<=k; ii++)

      { for (i=0; i<=n-1; i++)

        for (j=0; j<=m-1; j++)

          { jj=i*l+j; a[jj]=0.0;
      
      for (kk=0; kk<=n-1; kk++)

              a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];

          }

        for (i=0; i<=m-1; i++)

        for (j=0; j<=m-1; j++)

          { jj=i*m+j; e[jj]=r[jj];

            for (kk=0; kk<=n-1; kk++)

              e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];

          }

        js=rinv(e,m);

        if (js==0) 

          { free(e); free(a); free(b); return(js);}

        for (i=0; i<=n-1; i++)

        for (j=0; j<=m-1; j++)

          { jj=i*m+j; g[jj]=0.0;

            for (kk=0; kk<=m-1; kk++)

              g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];

          }

        for (i=0; i<=n-1; i++)

          { jj=(ii-1)*n+i; x[jj]=0.0;

            for (j=0; j<=n-1; j++)

              x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];

          }

        for (i=0; i<=m-1; i++)

          { jj=i*l; b[jj]=y[(ii-1)*m+i];

            for (j=0; j<=n-1; j++)

              b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];

          }

        for (i=0; i<=n-1; i++)

          { jj=(ii-1)*n+i;

            for (j=0; j<=m-1; j++)

              x[jj]=x[jj]+g[i*m+j]*b[j*l];

          }

        if (ii<k)

          { for (i=0; i<=n-1; i++)

            for (j=0; j<=n-1; j++)

              { jj=i*l+j; a[jj]=0.0;

                for (kk=0; kk<=m-1; kk++)

                  a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];

                if (i==j) a[jj]=1.0+a[jj];

              }

            for (i=0; i<=n-1; i++)

            for (j=0; j<=n-1; j++)

              { jj=i*l+j; b[jj]=0.0;

                for (kk=0; kk<=n-1; kk++)

                  b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];

              }

            for (i=0; i<=n-1; i++)

            for (j=0; j<=n-1; j++)

              { jj=i*l+j; a[jj]=0.0;

                for (kk=0; kk<=n-1; kk++)

                  a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];

              }

            for (i=0; i<=n-1; i++)

            for (j=0; j<=n-1; j++)

              { jj=i*n+j; p[jj]=q[jj];

                for (kk=0; kk<=n-1; kk++)

                  p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];

              }

          }

      }

    free(e); free(a); free(b);

    return(js);


  }